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Abstract
We investigate classical vector spin models of the rare-earth iron garnet ferrimagnets yttrium
iron garnet (YIG) and gadolinium iron garnet (GdIG) using Monte Carlo simulations. Critical
temperatures agree well with experiment. A compensation point is observed in GdIG, again in
good agreement with experiment.

1. Introduction

Ferrimagnets are materials in which different sublattices have
opposing magnetic moments of unequal magnitude. Thus,
unlike antiferromagnets, they have a nett moment at low
temperatures, which vanishes at a critical temperature Tc.
Furthermore, since the sublattice magnetizations will not, in
general, have the same temperature dependence, there is the
possibility of their cancellation at some lower temperature
Tcomp, known as a compensation point.

Ferrimagnetic materials have been known and studied
for a long time [1, 2]. The ‘classic’ materials are the
spinels and garnets [2, 3]. In the present work we focus
on the rare-earth iron garnets, yttrium iron garnet (YIG) and
gadolinium iron garnet (GdIG). Both have critical temperatures
near 550 K (560 K and 565 K, respectively) and GdIG
has a compensation point at 290 K. There has been a great
deal of work, both experimental and theoretical, on both
of these materials over the past 50 years, and one can
claim that they are well understood. Theoretical treatments
are largely based on a Heisenberg model of localized spins
at the magnetic sites, interacting via short range exchange
interactions. However, the model has only been analysed
within the molecular-field approximation (MFA) [4] or, at
low temperatures via spin wave (SW) theory [5]. It is well
known that MFA is quantitatively unreliable. In particular it
overestimates the critical temperature, in this case by some
20%, and therefore leads to a corresponding underestimate
of exchange parameters, obtained by fitting the MFA results
to experiment [5]. The motivation for the present work has
been to go beyond MFA, by using classical Monte Carlo
simulations, which allows a proper treatment of thermal
fluctuations. Our only approximation is to represent the

quantum spins by classical vectors, which can point in any
direction in space. For large quantum number S (here S =
5/2, 7/2) this should be a good approximation, except at very
low temperatures.

2. Models and methods

The structure of the rare-earth iron garnets, with chemical
formula written usually as R3Fe5O12, is complex. Each cubic
unit cell contains 8 formula units, i.e. 160 ions. The Fe3+
cations lie on two inequivalent sublattices (conventionally
labelled ‘a’ and ‘d’), and the rare-earth ions lie on a third
sublattice (labelled ‘c’). Each unit cell has, respectively, 16,
24, 24 a, d, and c sites. Figure 1 shows the positions of the
cations in one unit cell.

Each a site has 8, 6, 6 nearest neighbour a, d, c sites
respectively, while the corresponding numbers for d and c sites
are 4, 4, 2 and 4, 2, 4.

The spin Hamiltonian is written in the form

H = 2
∑

〈i, j〉
Ji j Si · Sj (1)

with interactions restricted to nearest neighbours between each
species. The magnetic ions Fe3+, Gd3+ are S-state ions
(L = 0) and therefore crystal-field effects are expected to
be unimportant. In principle, one should also include dipolar
interactions in the Hamiltonian. However, these are believed to
be small in these materials [5], and are usually neglected.

In principle the values of the exchange parameters could
be estimated by a priori electronic structure calculations
but, to our knowledge, this has not been attempted. In
practice they have been estimated by fitting to experimental
results. The more reliable approach has been to fit measured
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Figure 1. Positions of a, d, c sites in a cubic unit cell of the garnet structure. The panels show slices parallel to the x–y plane, for z = 0–7.

Table 1. Exchange parameters for YIG and GdIG (values in K).

Reference Year Jad Jaa Jdd Jac Jdc

YIG Harris 1963 45.7 9.1 9.1 SW magnetization
YIG Plant 1977 39.8 8.0 8.0 Magnon spectra
YIG Srivastava 1982 30.04 6.45 12.05 MFA
YIG Cherepanov 1993 39.8 3.8 13.4 Magnon spectra
GdIG Harris 1963 45.7 9.1 9.1 2.52 10.1 SW
GdIG Dionne 1970 36.4 −12.2 −17.1 −1.29 6.76 MFA
GdIG Srivastava 1982 30.04 6.45 12.05 0.60 1.80 MFA

magnon spectra obtained by inelastic neutron scattering to
theoretical spin wave results [6, 7], or to fit low temperature
magnetization data to SW results [5]. Other workers have fitted
thermodynamic data over an extended temperature range to the
MFA results [8, 9], but, as already remarked above, this leads
to a significant underestimate of the parameters. Table 1 lists
some of the parameter sets that have been used by previous
workers.

In YIG the only magnetic ions are the Fe3+, with
S = 5/2. The dominant exchange interaction is Jad

between nearest neighbour sites. This is antiferromagnetic
and results in antiparallel alignment of the a and d moments.
Ferrimagnetism arises simply from the unequal numbers of
a and d sites. Nearest neighbour interactions Jaa and Jdd

within each sublattice are also important. There is some
apparent disagreement in the literature about the sign of these.
Dionne [8] gives these as ferromagnetic, (actually for GdIG,
but by implication also for YIG), but the most recent and most
comprehensive study [7] clearly states that all interactions are
antiferromagnetic. Thus there is a degree of frustration in
each sublattice, overcome by the dominant coupling Jad. In
our Monte Carlo work we have used the most recent set [7]
Jad = 39.8 K, Jdd = 13.4 K, Jaa = 3.8 K.

In GdIG the c sites are occupied by Gd3+ ions, with
S = 7/2. The most important additional exchange couplings
are believed to be Jac and Jdc. The values of the exchange
parameters are less well known for GdIG. We have used the
parameter set of Harris [5] (table 1).

We use a standard Monte Carlo procedure with single spin
updates [10], with classical vector spins of length

√
(S(S+1)).

As the Hamiltonian is rotationally invariant in spin space, the
total moment can rotate freely without energy cost. To avoid
difficulties associated with this we include a small uniaxial
magnetic anisotropy in the Hamiltonian, to yield a preferred

ordering axis. Our results are not affected significantly by
this. A number of runs are taken at each temperature, to
ensure reasonable statistics. We have used systems of L3 unit
cells, with L = 4, 5, 6; i.e. 4096, 8000, 138 24 sites. These
are found to be large enough to avoid significant finite-size
effects. Various quantities are ‘measured’, as averages over the
corresponding time series. In our plots we show the specific
heat and sublattice magnetizations as functions of temperature.
The specific heat peak is used to give the critical temperature,
and the sublattice magnetizations yield the total moment.

3. Results

3.1. YIG

Figure 2 shows some of our results for YIG, in the form of
specific heat and (normalized) sublattice magnetizations versus
temperature. The joined point are for L = 6 (138 24 sites).
We also show, as unconnected points, specific heat results
for L = 4 (4096 sites). There is no systematic difference
between the two cases, confirming that our system is large
enough. The specific heat peak, at 520 K, gives an estimate
of the critical temperature. This should be compared with the
experimental value of 560 K. The magnetization data can be
used to compute the total moment—there is no compensation
point, in agreement with experiment. Of course, since we use
a classical model, our results will not yield the correct low
temperature behaviour. In particular, the specific heat will not
fall to zero, as it should.

3.2. GdIG

Similar results for GdIG are shown in figure 3. The specific
heat peak occurs at 550 K. This is to be compared to the
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Figure 2. Monte Carlo results for YIG. The filled circles are MC
results for a system of 138 24 sites. The crosses are specific heat
results for a smaller system of 4096 sites. For convenience both
magnetizations (upper and lower curves are, respectively, for a and d
sublattices) are shown as positive. The lines are simply guides for the
eye.

experimental value of 564 K. The sublattice magnetizations
for the a and d sublattices (Fe3+ spins) vary with temperature
in a way very like that in YIG. However the sublattice c
magnetization (Gd3+ spins) shows a rapid decrease at lower
temperatures. This reflects the relatively weak coupling
between the Gd and Fe spins. This rapid change, in the region
100–200 K, should be reflected in the specific heat, and indeed
there appears to be a broad peak at 150 K in our results. We
have not explored this in detail.

The total magnetization of GdIG, to within a normaliza-
tion factor, is

Mferri = −15σd + 10σa + 21σc. (2)

This is shown, versus temperature, in figure 4. We note
the compensation point at 330 K, where Mferri changes sign.
This is in reasonable agreement with the experimental value of
290 K.

4. Summary and conclusions

We have used classical Monte Carlo simulations to compute
the thermodynamic properties of a vector spin model for the
rare-earth iron garnet ferrimagnets YIG and GdIG. Thus we
are able to go beyond the usual molecular-field approach
(MFA). Using exchange parameters, obtained, by previous
workers, by fitting magnon spectra from inelastic neutron
scattering measurements, we find critical temperatures in good
agreement with the experimental values. For GdIG we find
a compensation point at 330 K, in good agreement with
experiment. Thus we have demonstrated that the same set of
exchange parameters suffices, as it should, to describe both

Figure 3. Monte Carlo results for GdIG for a system of 13824 sites.
The specific heat and the three sublattice magnetizations (a, d, c from
top to bottom) are shown versus temperature, for the parameter set of
Harris [5].

Figure 4. Total moment for GdIG, showing the compensation point.

the low temperature properties, in the spin wave regime, and
the thermodynamic properties at higher temperatures. More
generally, we have demonstrated that a classical Monte Carlo
approach is useful to study complex magnetic materials. It is
possible therefore to study other ferrimagnets, such as other
rare-earth garnets and spinels. It seems surprising that this
approach has not been commonly used before. The only related
work, of which we are aware, is a study of gadolinium gallium
garnet [11], which is an interesting frustrated antiferromagnet.
Stanica et al [12] have reported results of a Monte Carlo study
of the rare-earth iron garnets, but based on an Ising description,
which neglects the transverse fluctuations of the spins. A
preliminary report of this work has been given previously [13].
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